/\
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/________________\

Perimeter = 3

/\
/ \
______/ \______
\ / \ /
\ / \ /
\/ \/
/ \
/ \
/________________\
\ /
\ /
\/

Perimeter = (4/3)

^{1} * 3

_/\_
|/ \|
__/\__/ \__/\__
\ ¯¯ / \ ¯¯ /
|\ / \ /|
¯\/ \/¯
_/ \_
|/ \|
/________________\
¯ \/ \ / \/ ¯
|\ /|
¯\/¯

Perimeter = (4/3)

^{2} * 3

.xx.
|/ \|
..xx..x x..xx..
x ¯¯ / \ ¯¯ /
x\ / \ /x
¯x/ \x¯
x/ \x
|/ \|
x________________x
``xx``\ /``xx`¯
|\ /|
`xx`

Perimeter = (4/3)

^{n} * 3

Where

*n* is the

current iteration.

Since

fractals iterate infinitly, the perimeter of a koch snowflake is

infinite.