```
,
:         ;
i         M
,        @2
i       .M
,      ;.Z
i      Z X
,     M S
B                          ;    B  M
XM7                       ,   W   @
7M77                    :  M    W
i;,Sa                 . 8    ir
Z  iaZ7             ,B     W
:S    XZar         8      B
22      SS8X;  .;       M
0:         7W@7,      M
.8        2   a7X8SS M
0,     @    ,     ;M.ZSi.
rX  .2     ,      8   :XX2ZX8X.
Zi;      :      B           ,7S2;iSX:::i.
.  ....,,..  ....,,..  ....,.  87;  .,, ;  ... M ..           iaa7;a88ZSXS,..,,.
:Z  .a     .      8     ,XXaZ7Z2:
77    ,Z    i      MrXS8X7
0        a     XXZa,M
Sr          MSiWi     M
i2        S8X2 r        M
B.    ;Za2;      ;Z      B
i7   aZX.           r2     W
7  2Z:               . 8    ri
S0rS,                  i  8    W
,MM;                      ,   Z   W
0S                         ;    W  M
.     8 X
;     ,7 7
.      : Z
;       a0
,        0@
:         M
;         0
.

```

Parametric Cartesian equation: x = (a - b)cos(t) + bcos((a/b - 1)t), y = (a - b)sin(t) - bsin((a/b - 1)t)

This is a member of a set of four curves which are closely related. These are the epicycloid, the epitrochoid, the hypocycloid and the hypotrochoid and they are traced by a point P on a circle of radius b which rolls round a fixed circle of radius a.

For the hypocycloid, shown above in dodgy ASCII, the circle of radius b rolls on the inside of the circle of radius a. The point P is on the circumference of the circle of radius b. For the example a = 5 and b = 3.

Special cases

Also, the evolute of a hypocycloid is a similar hypocycloid.

Hy`po*cy"cloid (?), n. [Pref. hypo- + cycloid: cf. F. hypocycloide.] Geom.

A curve traced by a point in the circumference of a circle which rolls on the concave side in the fixed circle. Cf. Epicycloid, and Trochoid.

Log in or register to write something here or to contact authors.