The epi

cycloid is the path traced by a

point on the edge of a

circle as it rolls without slipping along the

edge of another circle. The two circles are not required to be the same size:

,,.onOK@@@HQme.,,
,,.szF'`` ``'Tux.,,
,zZ'`` ``'Cc,
,xX`` ``Ww,
.uU` `Nn.
dy` `qb
/7 VA
4y \D,
,I' `U,
dp qb
,j' `t,
AV VA
AV R1 VA
|69 .________________________96|
VA AV
VA AV
`t, ,j'
qb dp
`I, ,U'
\D 4y
VA /7
qb dy
`Nn. .uU`
`Ww,, ,,xX`
'Cc.,, ,,.zZ`
``'Tux.,, ,,.szF'``
``'TTOK@@@HQTT'``
,,.onOK@@@@@HQme.,,
,.szF'`` ``'Tux.,
,z'` `'c,
,x'` `'w,
.u'` `'n.
dy qb
/7 VA
4y \D
,I' `U,
dp qb
,j' `t,
AV R2 VA
69 ._______________________96
VA AV
`t, ,j'
qb dp
`I, ,U'
\D 4Y
VA /7
qb dy
`'n. .u'`
`'w, ,x'`
`'c, ,z'`
`'Tux.,, ,,.szF'`
``'TTOK@@@@@HQTT'``

With the above setup, let

**t** be the angle that circle 1 (having

radius **R1**) has rotated around circle 2 (radius

**R2**). Then the

parametric equations for the path a point on the edge of circle 1 traces is:

x=(R1+R2)*cos(t*R1/R2)-R1*cos(t)
y=(R1+R2)*sin(t*R1/R2)-R1*sin(t)

Note that, if R1=R2, then the shape is a

cardioid. (In the above setup, I used R1=25chars, R2=24chars.)