(mathematics)

(a) Set S is compact if every open cover of S can be reduced to a finite open cover.

(b) Set S is sequentially compact if every sequence has a convergent subsequence.

(c) Set S is countably compact if every infinite set has a limit point.

In metric spaces, (a), (b), and (c) are equivalent, while in general topology this is not always the case. The Heine-Borel Theorem explains more about what properties are associated with compact sets, based on the definition of compact.

Updated 20 June 2002: Revised for clarity.

Source: Set Theory and Metric Spaces, by Irving Kaplansky. ISBN 0-8284-0298-1