ii                                          
                           rS2;7aZ0ZS:8W2W0a@aWZiXSXX                           
                        2Si    :                :.   .Xa:                       
                     XX,  r0MBSS2Z8SS2    XZSX2aSS2WMZ   rr                     
                   7rr;:XM:           0M8M;           2M:rrBr:                  
                 7Mrr  ri          227     Za;          r   7aB.                
               2Mi   ,a          a;     i     S;         rX    aM               
             ,M.    8          S:       ,       2          Z     SZ             
            a0     B ;aSa0aXr2M;XS.     ;     X27XM;XXa0SaX 8     ;Wi           
          7iS    rZB,        Z    ;aS:     ZSr    ,,        XMr    .X0          
         8 W   2X Z         M        .8  rS        M          Z.Z:   ,Z         
        Z 0  aS  0         .X          0M           W         0  :Z, M 2        
       @  ;ri    W         S            r           W         :a   .X a 0       
      2  M;     Xr         X            .           8          M     .M  M      
      W  M      0.   Xa0SXZrM           ;           M28S0ZX;   0      ;M ;i     
     B :.M       0i2S       ,           .          .       :aS M       WX @     
     M rZ       rM                      r                     S2:      8 ; 2    
    ; W 0     W; Z                      .                     0  a;    W X 8    
    Z:  :2  :8    W                     ;                    S;   :a   W  a2    
    2M   M ai     .a                    :                   ;X      W  a  ,M    
    M    Z ;        Z                   .                  Xi        ;a    M    
... @  .  M  .  ...  :2M. .,........ .. 7 ,,.  ...,,... XBX  ....... aZ ., M  ..
    M    X2          X:                 .                :7;         82    M    
    88   M @       Zi                   ;                   S.      W Zi   M    
    2Z  ;X  0     8                     .                    0     X,  B  B2    
    X Z B    Xr  Xr                     i                     W   Z.   W  7Z    
     r7 8      Z Z                      ,                     r 7X     B B 0    
     M Z0       ;M                      i                    .,M       87 S,    
     X  ZM      Z  XaaZi  7rM           ,          S8r.  aZX8: 8       M  0     
      @  M      2i      00  7           ;           0 i07      W      M, B      
       8  0i     W         8                        W          M     aa ii      
       :S M Z    W         7,          .M           W         Z    Xir  Z       
        ir , ia, .X         M         :X;7         ,7         8  X2  X X        
          8r.  iX;M         ir       2:   SS       M         aS7S   BX,         
           SZ     rMrS       r.  Sa27   i   aS2.  8       XXM2     2a           
            ,M;     a iZX288ZraM:       .      ,0Mra80SS07 .:     Ma            
              aM     W          0       r      S.         SX    rM              
                0@.   ;X         ra:         a0         .Z    XM                
                  8XXX  ;          .;7    7X,          ;, :7r0;                 
                   ,7. 7;8M7i,     ri;SMZMii;     .:7BMXi7:;X                   
                     .XX:   aZ0;iii         .:;ii28S:   7X.                     
                         72Xi  ii;            i::  .SSS                         
                             ;XS:SZMMMM2MM@MM02irZ7    


Parametric Cartesian equation: x = (a + b)cos(t) - bcos((a/b + 1)t), y = (a + b)sin(t) - bsin((a/b + 1)t)

There are four curves which are closely related. These are the epicycloid, the epitrochoid, the hypocycloid and the hypotrochoid and they are traced by a point P on a circle of radius b which rolls round a fixed circle of radius a.

For the epicycloid, shown above in clarity-reducing ASCII, the circle of radius b rolls on the outside of the circle of radius a. The point P is on the circumference of the circle of radius b. For the example drawn here a = 8 and b = 5.

Special cases

  • a = b, a cardioid is obtained
  • a = 2b, a nephroid is obtained
  • a = (n - 1)b where n is an integer, then the length of the epicycloid is 8nb and its area is b2(n2 + n)
Also, the evolute of an epicycloid is a similar epicycloid.