Return to Highly Maneuverable Aircraft Technology (thing)

HIMAT is a set of concepts at heart, but is also [synonymous] with the insanely [manoeuvrable] and strikingly beautiful [aircraft] that tested said concepts and [technology].

Manoevrability Research

In 1975 [Rockwell] was [contracted] to produce two HiMAT aircraft for a [research] program run by [NASA] and the [Air Force Flight Dynamics Laboratory] between [1979] and [1983]. The project aimed to explore requirements to increase manoeuvrability in future aircraft. At the time, researchers at the [Dryden Flight Research Center] were developing [digital] [fly-by-wire] systems that could be operated from the ground, which made it possible to [experiment] with highly-manoeuvrable aircraft designs. HiMAT was intended to be a [testbed] for these and other technologies.(1)

Rockwell delivered both HiMAT aircraft at a cost of $17.3m. They were designed as [unmanned] craft, so were about half the size of a conventional fighter jet. There were several reasons for this: First, it was considerably [cheaper] than building a [full-scale] aircraft, which would have been necessary if the [pilot] were to be on-board. Second, the smaller scale meant [development] and construction time would be shortened; the aircraft would not need to be '[man-rated]' - tested to ensure it was safe for a human pilot - since the pilot would not actually be in the aircraft. Man-rating is always one of the most time-consuming and expensive parts of any aircraft's development. Third, the aircraft could be subjected to [stress|stresses] that a human pilot would be unable to withstand. Finally, a pilotless plane would provide an opportunity to test the ground-based flight control systems pioneered by Dryden.

Aircraft Design & Construction

The aircraft was [novel] in [configuration] and [construction]. It was actually designed around a core component to which new wings, control surfaces or [vectored nozzles] could be added(3). All available images of the aircraft seem to show it in the same configuration, but the changes between different parts may have been minor. The aircraft had large, semi-[delta] wings mounted at the rear of the 23.5ft [fuselage] with small fins at the tips called [winglets]; used on commercial aircraft such as the [Boeing 747]-400, they reduce drag and provide corresponding improvements in fuel economy.

Large, swept-up [canards] were fitted roughly central on each side of the nose, in leiu of [elevators] and [tailplane|tailplanes] used by more conventional aircraft designs. The twin [vertical stabilizer|vertical stabilizers] reached backwards from mounting points towards each [wing root], running through each wing from front to back.

The rear of the fuselage housed a single [General Electric] J-85-21 [turbojet], fed by an [air intake] slung underneath the nose in a configuration not unlike that of the [F-16 Fighting Falcon|F-16].

In a fairly risky venture (mitigated by the fact that the aircraft was pilotless), about 30% of the HiMAT aircraft incorporated unproven composite materials including [fibreglass], [epoxy graphite] and [carbon fibre](5). These, it was theorised, would provide the structural integrity the aircraft would need to make the high-stress manoeuvres it was intended to perform. The results of testing these materials would later prove [invaluable] in the design of the [X-29]. In another effort to speed up the design (again, acceptable because the HiMAT aircraft was pilotless), [CAD] tools were used to develop the airframe. This drastically cut down on the time needed to test the design in [wind tunnel|wind tunnels], but it meant that several of the initial flights of the aircraft had to be devoted to deriving [stability] and control data.(1)

HIMAT in Flight

The first flight of a HiMAT aircraft took place on July 27th [1979]. As with the [X-24] and Rockwell's [record-setting] [hypersonic] [X-15], all HiMAT [sortie|sorties] began with the craft being carried up to 45,000ft on a wing pylon of a [B-52] and being launched by airdrop (although it was quite capable of taking off under its own power). It was controlled by a NASA [test pilot] on the ground in a 'virtual cockpit' scenario, using video feeds from cameras on the aircraft. The 'cockpit' on the ground contained all the normal flight controls - control stick, [rudder] pedals, throttle, sensor displays etc - and transmitted all control impulses by radio to the aircraft, where the onboard [computer] translated them into movements of the [control surfaces].

In case of a failure of the [telemetry] system, HiMAT craft were always tailed by an [F-104 Starfighter|F-104] chase plane, whose [co-pilot] could control it from his seat if needed. After the flight concluded the craft landed on a dry lake bed with the aid of a [camera] mounted in the nose, touching down on [landing skids] similar to those used on the X-15.

Performance & Results

The HiMAT craft had a top speed of about [mach] 1.5; its main focus of research was manoeuvrability in the [transonic] speed range of 600-800mph, where superior performance is both difficult to attain and most important(2). Largely due to the inclusion of the large canards in the design (and because it was unmanned), the craft was capable of making turns at a sustained 8 [gee|gees] at near the [speed of sound], with a [turn radius] less than half that of conventional fighter planes. Such manoeuvres would render a human pilot [unconscious]. As a point of comparison, the F-16 - still considered one of the most manoeuvrable aircraft currently in service - has a maximum sustained turning capacity of about 4.5G.

An interesting product of the HiMAT program was a configurable [autopilot] which could be [preset] to perform certain manoeuvres repeatedly with great accuracy, which would not be possible with human control. This meant that large quantities of [reliable] research data could be collected while the autopilot was repeating the manoeuvres, and that other small factors in the craft's [configuration] could be altered by the pilot while the craft was under control of the autopilot. This technique of applying an autopilot to repeat test manoeuvres proved very useful in testing of future experimental aircraft.

The HiMAT program also provided valuable research data on the performance of certain composite materials under flight conditions; many of these materials are now used in operational aircraft. The program also resulted in advances in digital flight control systems, capable of monitoring and correcting potential flight hazards - something that would prove vital in the design of unstable aircraft. It worth noting that the manoeuvrability of the HiMAT aircraft still wildly outstrips any currently in service.

The last flight took place on January 6th, 1983; the two craft flew 26 sorties between them. They are both now on display to the public - one in the [Smithsonian Institution|Smithsonian Institute's] National Air and [Space] Museum, the other at NASA Ames Research Center.


Sources:

  • Baer-Riedhart, Jenny; "HiMAT Fact Sheet";
    <http://www.dfrc.nasa.gov/PAO/PAIS/HTML/FS-025-DFRC.html>
  • Boeing; "HiMAT";
    <http://www.boeing.com/companyoffices/history/bna/himat.htm>
  • Ninfinger Productions; "HiMAT";
    <http://www.bomarc.com/Rockets/X-15/himat.html>
  • National Air and Space Museum; "Beyond the Limits";
    <http://www.nasm.si.edu/galleries/gal213/gal213.html>
  • Rock, Alexis; "Rockwell HiMAT";
    • (Google translation); <http://216.239.35.120/translate_c?hl=en&sl=fr&u=http://aircraftstories.free.fr/mono/edwards/aircraft/himat/himat.htm
      &prev=/search%3Fq%3Dhimat%2Bsite:aircraftstories.free.fr%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3Dutf-8>
    • (Original); <http://aircraftstories.free.fr/mono/edwards/aircraft/himat/himat.htm>

Existing:


Non-Existing: