EXPERIMENTAL SYRINGOMYELIA

Although it is generally assumed that syringomyelia is the accumulation of fluid within cavities(syrinx) abnormally created into spinal cord which can contribute to neurological dysfunction (Williams), there are no reports describing intramedullary pressure in this entity.

In human syringomyelia and in the late stage of experimental syringomyelia, the spinal cord tissue adjacent to the syrinx is exposed to a similar pathophysiologic condition. We investigated the ultrastructural changes in the late stages of kaolin-induced syringomyelia, and in addition, we presented magnetic resonance imaging (MRI) findings of the cervicomedullary junction and syrinx, and the nature of edema in the spinal cord of this experimental model.

METHODS: Syringomyelia was induced in rabbits by intracisternal injection of kaolin. MRI was performed at 6 weeks, and 6 and 12 months following injection, and the animals were killed by transcardial perfusion of formaldehyde solution and examined by transmission electron microscopy. Evans blue was injected intravenously in six rabbits, 6 weeks and 12 months following kaolin injection and was examined by confocal laser scanning microscopy.

RESULTS: MRI showed that the syrinx communicated with the fourth ventricle in most animals. Demyelination of varying degrees and slight edematous changes were seen in the perisyrinx white matter. No extravasation of Evans blue was seen by confocal microscopy. Abundant astrocytic proliferation with a large number of glial filaments was seen at the margin of the syrinx and between the axons in the perisyringeal region. The perivascular space enlargement occurred in both the gray and white matter. The endothelial junctions appeared intact. Regenerating axons and remyelination by oligodendrocytes were seen occasionally.

CONCLUSIONS: The MRI confirmed the communication between the fourth ventricle and the syrinx. The ultrastructural changes were almost identical to those of the early stage syrinx, but the astrocytic proliferation was more severe, and the edema was less in the late stage. The perisyrinx edema appeared to be of the interstitial type, as in hydrocephalus. Axonal degeneration and demyelination continued with abortive attempt at regeneration and remyelination in the less edematous late stage, which might be the cellular basis for the persistence or worsening of clinical symptoms and signs in the chronic stage of syringomyelia even after surgical treatment.